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The projection targets of a neuronal population are a key feature
of its anatomical characteristics. Historically, tissue sectioning,
confocal microscopy, and manual scoring of specific regions of
interest have been used to generate coarse summaries of meso-
scale projectomes. We present here TrailMap, a three-dimensional
(3D) convolutional network for extracting axonal projections from
intact cleared mouse brains imaged by light-sheet microscopy.
TrailMap allows region-based quantification of total axon content
in large and complex 3D structures after registration to a standard
reference atlas. The identification of axonal structures as thin as
one voxel benefits from data augmentation but also requires a
loss function that tolerates errors in annotation. A network trained
with volumes of serotonergic axons in all major brain regions can be
generalized to map and quantify axons from thalamocortical, deep
cerebellar, and cortical projection neurons, validating transfer learn-
ing as a tool to adapt the model to novel categories of axonal mor-
phology. Speed of training, ease of use, and accuracy improve over
existing tools without a need for specialized computing hardware.
Given the recent emphasis on genetically and functionally defining
cell types in neural circuit analysis, TrailMap will facilitate automated
extraction and quantification of axons from these specific cell types
at the scale of the entire mouse brain, an essential component of
deciphering their connectivity.

neural networks | axons | whole-brain | light-sheet microscopy | tissue
clearing

Volumetric imaging to visualize neurons in intact mouse brain
tissue has become a widespread technique. Light-sheet mi-

croscopy has improved both the spatial and temporal resolution
for live samples (1, 2), while advances in tissue clearing have
lowered the barrier to imaging intact organs and entire organ-
isms at cellular resolution (3, 4). Correspondingly, there is a
growing need for computational tools to analyze the resultant
large datasets in three dimensions. Tissue clearing methods such
as CLARITY and iDISCO have been successfully applied to the
study of neuronal populations in the mouse brain, and auto-
mated image analysis techniques have been developed for these
volumetric datasets to localize and count simple objects, such as
cell bodies of a given cell type or nuclei of recently active neu-
rons (5–8). However, there has been less progress in software
designed to segment and quantify axonal projections at the scale
of the whole brains.
As single-cell sequencing techniques continue to dissect het-

erogeneity in neuronal populations (e.g., refs. 9–11) and as more
genetic tools are generated to access these molecularly or func-
tionally defined subpopulations, anatomical and circuit connec-
tivity characterization is crucial to inform functional experiments
(12, 13). Traditionally, and with some exceptions (e.g., refs. 14,
15), “projectome” analysis entails qualitatively scoring the den-
sity of axonal fibers in manually defined subregions selected from
representative tissue sections and imaged by confocal micros-
copy. This introduces biases from the experimenter, including
which thin tissue section best represents a large and complicated
three-dimensional (3D) brain region; how to bin axonal densities

into high, medium, and low groups; whether to consider thin and
thick axons equally; and whether to average or ignore density
variation within a target region. Additionally, it can be difficult to
precisely align these images to a reference atlas (16). Volumetric
imaging of stiff cleared samples and 3D registration to the Allen
Brain Institute’s Common Coordinate Framework (CCF) has
eliminated the need to select individual tissue sections (17).
However, without a computational method for quantifying axon
content, researchers must still select and score representative
two-dimensional (2D) optical sections (18).
The automated identification and segmentation of axons from

3D images should circumvent these limitations. Recent appli-
cation of deep convolutional neural networks (DCNNs) and
Markov random fields to biomedical imaging have made excel-
lent progress at segmenting grayscale computed tomography and
MRI volumes for medical applications (19–23). Other fluores-
cent imaging strategies including light-sheet, fMOST, and serial
two-photon tomography have been combined with software like
TeraVR, Vaa3D, Ilastik, and NeuroGPS-Tree to trace and recon-
struct individual neurons (24–28). However, accurate reconstruc-
tion often requires a technical strategy for sparse labeling. While
reconstructions of sparsely labeled axons are informative for mea-
suring projection variability among single cells, they are usually
labor-intensive and underpowered when interrogating population-
level statistics and rare collateralization patterns.

Significance

Simple, high-resolution methods for visualizing complex neural
circuitry in 3D in the intact mammalian brain are revolutioniz-
ing the way researchers study brain connectivity and function.
However, concomitant development of robust, open-source
computational tools for the automated quantification and
analysis of these volumetric data has not kept pace. We have
developed a method to perform automated identifications of
axonal projections in whole mouse brains. Our method takes
advantage of recent advances in machine learning and out-
performs existing methods in ease of use, speed, accuracy, and
generalizability for axons from different types of neurons.
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As one of the most successful current DCNNs, the U-Net
architecture has been used for local tracing of neurites in small
volumes and for whole-brain reconstruction of brightly labeled
vasculature (29–33). To identify axons, a similarly regular
structural element, we posited that a 3D U-Net would be well
suited for the challenges of a much lower signal-to-noise ratio,
dramatic class imbalance, uneven background in different brain
regions, and difficult annotation strategy. In addition, whole-
brain imaging of axons necessitates the inclusion of any arti-
facts that contaminate the sample. The paired clearing and
analysis pipeline we present here mitigates the impact of
autofluorescent myelin and nonspecific antibody labeling that
interfere with the detection of thin axons. Our network,
TrailMap (Tissue Registration and Automated Identification
of Light-sheet Microscope Acquired Projectomes), provides a
solution to all of these challenges. We demonstrate its gen-
eralization to multiple labeling strategies, cell types, and tar-
get brain regions. Alignment to the Allen Institute reference
atlas allows for visualization and quantification of individual
brain regions. We have also made available our best trained
model (https://github.com/AlbertPun/TRAILMAP) such that
any researcher with mesoscale projections in cleared brains
can use TrailMap to process their image volumes or, with
some additional training and transfer learning, adapt the
model to their data.

Results
TrailMap Procedures. To generate training data, we imaged 18
separate intact brains containing fluorescently labeled seroto-
nergic axons (SI Appendix, Fig. S1A). From these brains, we
cropped 36 substacks with linear dimensions of 100 to 300 voxels
(Fig. 1A). Substacks were manually selected to represent the
diversity of possible brain regions, background levels, and axon
morphology. As with all neural networks, quality training data
are crucial. Manual annotation of complete axonal structures in
three dimensions is difficult, imprecise, and laborious for each
volume to be annotated. One benefit of the 3D U-Net is the
ability to input sparsely labeled 3D training data. We annotated 3
to 10 individual XY planes within each substack, at a spacing of
80 to 180 μm between labeled slices (Fig. 1A). Drawings of axons
even included single labeled voxels representing the cross-section
of a thin axon passing through the labeled slice. In the same XY
slice, a second label surrounding the axon annotation (“edges”)
was automatically generated, and the remaining unlabeled voxels
in the slice were given a label for “background.” Unannotated
slices remained without a label as previously indicated.
Training data were derived from serotonergic axons labeled by

multiple strategies to better generalize the network (SI Appendix,
Fig. S1A). As serotonin neurons innervate nearly all forebrain
structures, they provide excellent coverage for examples of axons
in regions with variable cytoarchitecture and, therefore, variable
background texture and brightness. Our focus on imaging intact
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Fig. 1. Overview of the TrailMap workflow to extract axonal projections from volumetric data. (A) Annotation strategy for a single subvolume (120 × 120 ×
101 voxels). Three planes are labeled with separate hand-drawn annotations for background, artifacts, and axons. The one-pixel-width “edges” label is
automatically generated. (B) Basic architecture of the encoding and synthesis pathways of the 3D convolutional U-Net. Microscope volumetric data enters the
network on the left and undergoes a series of convolutions and scaling steps, generating the feature maps shown in gray. Skip connections provide higher-
frequency information in the synthesis path, with concatenated features in white. More details are provided in ref. 30. (C) A network output thinning
strategy produces skeletons faithful to the raw data but with grayscale intensity reflecting probability rather than signal intensity or axon thickness. XY and
XZ projections of one subvolume are shown (122 × 609 × 122 μm). (D) A 2-mm-thick volumetric coronal slab, before and after the TrailMap procedure, which
includes axon extraction, skeletonization, and alignment to the Allen Brain Atlas Common Coordinate Framework.
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brains required the inclusion of contaminating artifacts from the
staining and imaging protocol since these nonspecific and bright
artifacts are common in cleared brains and interfere with
methods for axon identification. We addressed this in two ways.
First, we implemented a modified version of the AdipoClear
tissue clearing protocol (34, 35) that reduces the auto-
fluorescence of myelin. As fiber tracts composed of unlabeled
axons share characteristics with the labeled axons we aim to
extract, this reduces the rate of false positives in structures such
as the striatum (SI Appendix, Fig. S1B). Second, we included 40
substacks containing representative examples of imaging artifacts
and nonspecific background and generated a fourth annotation
label, “artifacts,” for these structures.
From this set of 76 substacks, we cropped and augmented

10,000 separate cubes of 64 × 64 × 64 voxels to use as the
training set. Our validation set comprised 1,700 cubes extracted
from 17 separate substacks, each cropped from one of nine
brains not used to generate training data. The U-Net architec-
ture included two 3D convolutions with batch normalization at
each layer, 2 × 2 × 2 max pooling between layers on the encoder
path, and 2 × 2 × 2 upconvolution between layers on the decoder
path (Fig. 1B). Skip connections provide information necessary
for recovering a high-resolution segmentation from the final 1 ×
1 × 1 convolution. The final network was trained for 188 epochs
over 20 h, but typically reached a minimum in the validation loss
approximately a third of the way into training. Subsequent di-
vergence in the training and validation F1 scores (Materials and
Methods) indicated overfitting, and, as such, the final model
weights were taken from the validation loss minimum (SI
Appendix, Fig. S1 C–E).
For a given input cube, the network outputted a 36 × 36 × 36

volume containing voxel-wise axon predictions (0 < P < 1). Large
volumes, including intact brains, were processed with a sliding
window strategy. From this output, a thinning strategy was
implemented to generate a skeletonized armature of the
extracted axons (Fig. 1C). Grayscale values of the armature were
the weighted sum of 3D skeletons generated from binarization of
network outputs. For visualizations, this strategy maintained
axon continuity across low-probability stretches that would oth-
erwise have been broken by a thresholding segmentation strat-
egy. A separate benefit of this skeletonization strategy is that it
treats all axons, thin and thick or dim and bright, equally for both
visualization and quantification. A second imaging channel was
used to collect autofluorescence, which in turn was aligned to the
Allen Brain Atlas Common Coordinate Framework (CCF) via
sequential linear and nonlinear transformation (http://elastix.isi.
uu.nl/). These transformation vectors were then used to warp the
axon armature into a standard reference space (Fig. 1D).

Comparisons with Random Forest Classifier.One of the most widely
used tools for pixelwise classification and image segmentation is
the random-forest–based software Ilastik (https://www.ilastik.
org/). We compared axon identification by TrailMap with mul-
tiple Ilastik classifiers and found TrailMap to be superior (best
TrailMap model, recall, 0.752; precision, 0.377; one-voxel ex-
clusion zone precision, 0.790; best Ilastik classifier, recall, 0.208;
precision, 0.661; one-voxel exclusion zone precision, 0.867), but
most notably in the clarity of the XZ projection (Fig. 2 A–C).
The increase in TrailMap’s precision when excluding “edge”
voxels suggested that many false positives are within one voxel of
annotated axons. Ilastik examples used for comparison include
classifiers trained in 3D with sparse annotations that include or
exclude edge information as described for TrailMap, an example
trained with images generated by iDISCO+, and a classifier
trained in 2D using the exact set of labeled slices used to train
TrailMap (SI Appendix, Fig. S2A). An alternative deep network
architecture trained on similar 3D data did not properly segment
axons in our dataset (SI Appendix, Fig. S2 B, Left). This is not

surprising given the different imaging paradigm used to generate
training data (fMOST). However, TrailMap performed well on
example data from fMOST imaging (SI Appendix, Fig. S2 B,
Right), suggesting that it can generalize to other 3D data.
To better understand which aspects of the TrailMap network

contribute to its function, we trained multiple models without
key components for comparison. As with all neural networks, we
identified a number of hyperparameters that affected the quality
of the network output. The most important was the inclusion of a
weighted loss function to allow for imperfect annotations of thin
structures. The cross-entropy calculation for voxels defined as
“edges” were valued 30× less in calculating loss than the voxels
annotated as axons. Manually labeling structures with a width of
a single pixel introduced a large amount of human variability (SI
Appendix, Fig. S2C), and deemphasizing the boundaries of these
annotations allowed the network’s axon prediction to “jitter”
without producing unnaturally thick predictions (SI Appendix,
Fig. S2D). Relatedly, the total loss equation devalued back-
ground (7.5×) and artifact examples (1.875×) with respect to
axon annotations—a set of weights that balances false positives
and negatives and compensates for class imbalances in the
training data (Fig. 2D and SI Appendix, Fig. S2D).

Details of Axonal Projections. To determine TrailMap’s ability to
identify axons from intact cleared samples, we tested a whole
brain containing axon collaterals of serotonin neurons projecting
to the bed nucleus of stria terminalis. With the extracted axonal
projectome transformed into the Allen Institute reference space,
the axon armature could be overlaid on a template to better
highlight their presence, absence, and structure in local subre-
gions (Fig. 3A and SI Appendix, Fig. S3). However, it was difficult
to resolve steep changes in density or local hotspots of in-
nervation without selectively viewing very thin sections. By av-
eraging axons with a rolling sphere filter, a small hyperdense
zone is revealed in amygdala that would have been missed in
region-based quantifications (Fig. 3B, arrow). Total axon content
in functionally or anatomically defined brain regions could be
quantified (SI Appendix, Fig. S4) (36) or otherwise projected and
visualized to retain local density information in three dimensions
(Fig. 3 C and D and Movie 1).
An added benefit of the transformation into a reference co-

ordinate system is that brain regions as defined by the Allen
Institute could be used as masks for highlighting axons in indi-
vidual regions of interest. As an example, the aforementioned
density observed in amygdala is revealed to be contributed by
two nearby dense zones in the basomedial and basolateral
amygdala, respectively (Fig. 3E and Movie 2). These analyses of
forebrain innervation by distantly located, genetically identified
serotonergic neurons ensure certainty of axonal identity. How-
ever, in anatomical zones surrounding the labeled cell bodies in
dorsal raphe, TrailMap does not distinguish among local axons,
axons in passage, or intermingled dendritic arbors (SI Appendix,
Fig. S5A). Without anatomical predictions, our imaging cannot
morphologically distinguish these fiber types.

Generalization to Other Types of Neurons and Brain Regions. Given
that TrailMap was trained exclusively on serotonergic neurons, it
may not generalize to other cell types if their axons are of dif-
ferent sizes, tortuosity, or bouton density. The network may also
fail if cells are labeled with a different genetic strategy or imaged
at different magnification. However, our data augmentation
provided enough variation in training data to produce excellent
results in extracting axons from multiple additional cell types,
fluorophores, viral transduction methods, and imaging setups.
TrailMap successfully extracted brain-wide axons from pons-
projecting cerebellar nuclei (CN) neurons retrogradely infected
with AAVretro-Cre and locally injected in each CN with AAV-
DIO-tdTomato (Fig. 4A). Visualizing the whole brain (Fig. 4A)
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or the thalamus (Fig. 4B and Movie 3) in 3D reveals the contours
of the contralateral projections of these neurons without ob-
scuring information at the injection site or ipsilateral targets.
We also tested TrailMap on functionally identified thala-

mocortical axons in barrel cortex labeled by conditional
AAV-DIO-CHR2-mCherry and TRAP2 activity-dependent ex-
pression of Cre recombinase (37). The higher density of local
innervation of these axons necessitates imaging at higher mag-
nification, resulting in a change in axon scale and appearance in
the imaging volume. Buoyed by the spatial scaling included in the
data augmentation, TrailMap reliably revealed the dense tha-
lamic innervation of somatosensory layer IV and weaker in-
nervation of layer VI (Fig. 4C). In contrast, though the Ilastik
classifier performs moderately well on serotonergic axons, it fails
to generalize to thalamocortical axons, perhaps owing to the
change in scale of the imaging strategy (SI Appendix, Fig. S5B).
Finally, TrailMap also extracted cortico-cortical projection

axons from prefrontal cortex (PFC) labeled by retrograde CAV-
Cre and AAV-DIO-mGFP-2A-synaptophysin-mRuby. Axons from
PFC neurons imaged in posterior visual and entorhinal cortices
were identified with the exception of the most superficial axons
in layer I (Fig. 4D). The failure to identify layer-I axons could be
because the serotonergic training set did not include examples of
superficial axons; as a result, the trained network used the
presence of low-intensity grayscale values outside the brain to
influence the prediction for each test cube containing the edge of
the sample. Using 17 new training substacks from brains with
annotated superficial axons from PFC cortical projections and 5
new validation volumes, we performed transfer learning using
our best model as the initial weights. After just five epochs, the
model successfully identified these layer-I axons (Fig. 4D).

While TrailMap’s training and test data all originated from
cleared mouse brains imaged by light-sheet microscopy, the
network can also extract filamentous structures from 3D volumes
imaged in other species and by other imaging methods. For ex-
ample, variably bright neuronal processes in a Drosophila ventral
nerve cord (38) imaged by confocal microscopy were all
extracted by our model and equalized in intensity by our thinning
method (SI Appendix, Fig. S5C). This normalization reveals the
full coverage of these fibers, independent of visual distractions
from bright cell bodies or thick branches. This same thinning
strategy, applied to a single Drosophila antennal lobe interneu-
ron’s dendritic arborization (SI Appendix, Fig. S5D), simplified
the cell’s structure to a wireframe which could aid in manual
single-cell reconstructions. Lastly, dye-labeled vasculature (39) in
cleared mouse brains also yielded high-quality segmentations of
even the smallest and dimmest capillaries (SI Appendix, Fig.
S5E), suggesting TrailMap’s utility extends beyond neuronal
processes. Notably, all of these results were generated without
any retraining of the network. With additional training data, we
expect that TrailMap may apply to a wider range of cell types,
species, and imaging modalities.

Discussion
Here we present an adaptation of a 3D U-Net tuned for iden-
tifying axonal structures within noisy whole-brain volumetric
data. Our trained network, TrailMap, is specifically designed to
extract mesoscale projectomes rather than reconstructions of
axons from sparsely labeled individual neurons. For intact brains
with hundreds of labeled neurons or zones of high-density axon
terminals, we are not aware of a computational alternative that
can reliably identify these axons.
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Our clearing and image processing pipeline address a number
of challenges that have prevented these mesoscale analyses until
now. First, all clearing techniques have at least some issues with
background or nonspecific labeling that can interfere with automated

image analysis. Removing myelinated fiber tracts with a modified
AdipoClear protocol greatly improved TrailMap’s precision in
structures such as the striatum. Second, our weighted loss function
considers manually annotated, nonspecific, bright signals separately
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from other background areas—an essential step in reducing false
positives. Relatedly, by devaluing the loss calculated for voxels
adjacent to axon annotations, we reduced the rate of false negatives
by allowing the network to err by deviations of a single voxel. Third,
we present a strategy for thinning TrailMap’s output to construct an
armature of predicted axons. One benefit of this thinning technique
is a reduction in false breaks along dim axonal segments. Impor-
tantly, this benefit relies on the gradients in probability predicted by
the cross-entropy–based loss calculation. The resultant armature
improves visualizations and reduces biases in analysis and quanti-
fication by giving each axon equal thickness independent of staining
intensity or imaging parameters.
Aligning armatures and density maps to the Allen Institute’s

reference brain highlights which brain regions are preferentially
innervated or avoided by a specific projection (36). Given that
some brain regions are defined with less certainty, it will be
possible to use the axon targeting of specific cell types to refine
regional boundaries. TrailMap succeeds at separating thalamo-
cortical projections to individual whisker barrels (Fig. 4C), a
brain area with well-defined structure. Thus, it will be interesting
to locate other areas with sharp axon density gradients that de-
marcate substructures within larger brain regions. These collat-
eralization maps will also assist neuroanatomists investigating
the efferent projection patterns of defined cell populations.

TrailMap has the added benefit of 3D, intact structures as the
basis for quantification, but also the ability to process samples
and images in parallel, reducing the active labor required to
generate a complete dataset that spans the entire brain. Trail-
Map code is publicly available, along with the weights for our
best model and example data. A consumer-grade GPU is suffi-
cient for both processing samples and for performing transfer
learning, while training a new model from scratch benefits from
the speed and memory availability from cloud computing ser-
vices. While 2D drawing tools are sufficient for generating
quality training sets and reduce manual annotation time, we
suspect that virtual reality-based visualization products would
assist labeling strategies in three dimensions, potentially bol-
stering accuracy even further (24). We hope that TrailMap’s ease
of use will lead to its implementation by users as they test brain
clearing as a tool to visualize their neurons of interest. We expect
that, as neuronal cell types are becoming increasingly defined by
molecular markers, TrailMap can be used to map and quantify
whole-brain projections of these neuronal types using viral-
genetic and intersectional genetic strategies (e.g., ref. 36).

Materials and Methods
Animals. All animal procedures followed animal care guidelines approved by
Stanford University’s Administrative Panel on Laboratory Animal Care
(APLAC). Individual genetic lines include wildtype mice of the C57BL/6J and
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CD1 strains, TRAP2 (Fos-iCreERT2; Jackson, stock no. 030323), Ai65 (Jackson,
stock no. 021875), and Sert-Cre (MMRRC, stock no. 017260-UCD). Mice were
group-housed in plastic cages with disposable bedding on a 12-h light/dark
cycle with food and water available ad libitum.

Viruses. Combinations of transgenic animals and viral constructs are outlined
in SI Appendix, Fig. S1A. Viruses used to label serotonergic axons include
AAV-DJ-hSyn-DIO-HM3D(Gq)-mCherry (Stanford vector core), AAV8-ef1α-
DIOFRT-loxp-STOP-loxp-mGFP (Stanford vector core; ref. 40),AAV-retro-CAG-DIO-Flp
(Salk Institute GT3 core; ref. 40), AAV8-CAG-DIO-tdTomato (UNC vector core,
Boyden group), AAVretro-ef1α-Cre (Salk Institute GT3 core), AAV8-ef1α-DIO-CHR2-
mCherry (Stanford vector core), AAV8-hSyn-DIO-mGFP-2A-synaptophysin-mRuby
(Stanford vector core, Addgene no. 71760), and Cav-Cre (Eric Kremer, Institut de
Génétique Moléculaire, Montpellier, France; ref. 41).

AdipoClear Labeling and Clearing Pipeline. Mice were transcardially perfused
with 20 mL 1× PBS containing 10 μg/μL heparin followed by 20 mL ice-cold
4% PFA and postfixed overnight at 4 °C. All steps in the labeling and clearing
protocol are on a rocker at room temperature for a 1-h duration unless
otherwise noted. Brains are washed 3× in 1× PBS and once in B1n before
dehydrating stepwise into 100% methanol (20, 40, 60, 80% steps). Two
additional washes in 100% methanol remove all of the water before an
overnight incubation in 2:1 dichloromethane (DCM):methanol. The follow-
ing day, two washes in 100% DCM and three washes in methanol precede
4 h in a 5:1 methanol:30% hydrogen peroxide mixture. Stepwise brains are
rehydrated into B1n (60, 40, 20% methanol), washed once in B1n, and then
permeabilized 2× in PTxwH containing 0.3 M glycine and 5% DMSO. Sam-
ples are washed 3× in PTxwH before adding primary antibody (chicken anti-
GFP, 1:2,000; Aves Labs; rabbit anti-RFP, 1:1,000; Rockland). Incubation is for
7 to 11 d, rocking at 37 °C, with subsequent washes also at this temperature.
Brains are washed 5× in PTxwH over 12 h and then 1× each day for 2 ad-
ditional days. Secondary antibody (donkey anti-rabbit, 1:1,000; Thermo;
donkey anti-chicken, 1:2,000; Jackson) is incubated rocking at 37 °C for 5 to
9 d. Washes were performed 5× in PTxwH over 12 h and then 1× each day
for 2 additional days. Samples are dehydrated stepwise into methanol,
as before, but with water as the counterpart, then washed 3× in 100%
methanol, overnight in 2:1 DCM:methanol, and in 2× 100% DCM the next
morning. The second wash in DCM is extended until the brain sinks, before
transfer to dibenzyl ether (DBE) in a fresh tube and incubation with rocking
for 4 h before storing in another fresh tube of DBE at room temperature.
Solutions were as follows: B1n, 1:1,000 Triton X-100, 2% wt/vol glycine,
1:10,000 NaOH 10N, 0.02% sodium azide; and PTxWH in 1× PBS, 1:1,000
Triton X-100, 1:2,000 Tween-20, 2 μg/μL heparin, 0.02% sodium azide. This
protocol diverges from the AdipoClear method subtly, by adding and
extending the duration of exposure to DCM and by adjusting the duration
of some steps. Most importantly, the overnight methanol/DCM steps and the
hydrogen peroxide timing are crucial to image quality.

Light-Sheet Imaging. Image stacks were acquired with the LaVision Ultra-
microscope II light-sheet microscope using the 2× objective at 0.8× optical
zoom (4.0625 μm per voxel, XY dimension). Thalamocortical axons were
imaged at 1.299 μm per voxel, XY dimension. Maximum sheet objective NA
combined with 20 steps of horizontal translation of the light sheet improves
axial resolution. Z-step size was 3 μm. Axon images were acquired with the
640-nm laser, and a partner volume of autofluorescence of equal dimensions
was acquired with the 488-nm laser. No preprocessing steps were taken
before entering the TrailMap pipeline.

Datasets.All mouse brain datasets were generated in the Luo Lab as described
earlier. Drosophila datasets were downloaded from public FlyCircuit
(104198-Gal4) and FlyLight (R11F09-Gal4) repositories (38, 42). Mouse vas-
culature and associated ground truth annotation were downloaded from
http://discotechnologies.org/VesSAP (39).

TrailMap Annotation Strategy. To create the training set for axons, we used
the FIJI Segmentation Editor plugin to create sparse annotations in volumes
of ∼100 to 300 voxels per side. These were cropped from 18 samples across
experimental batches from each of the three serotonergic neuron labeling
strategies outlined in SI Appendix, Fig. S1. Two experts traced axons in these
36 different substacks by labeling single XY-planes from the stack every ∼20
to 30 slices. Additionally, 40 examples of bright artifacts were found from
these volumes and labeled as artifacts through an intensity thresholding
method. Some examples contained both manually annotated axons and
thresholded labels for artifacts. From these labeled volumes, 10,000 training
examples were generated by cropping cubes (linear dimensions, 64 × 64 ×

64) from random locations within each labeled substack. We also introduced
an additional independent label, referenced as “edges.” This label was
programmatically added to surround the manually drawn “axon” label in
the single-voxel thick XY plane. This label was generated and subsequently
given less weight in the loss function specifically to help the network con-
verge by reducing the penalty for making off-by-one errors in voxels next to
axons. Both edge and artifact labels are only used for weighting in the loss
function, but are still counted as background. We created a validation set
using the same methodology as the training set; however, to test for resil-
ience against the potential impacts of staining, imaging, and other technical
variation, the substacks used for the validation set were from different ex-
perimental batches than the training set.

Data Augmentation and Network Structure. Due to the simple cylindrical
shape of an average axon segment, Z-score normalization was avoided as it
removed the raw intensity information from the original image volume.
Without this information, the network could not differentiate natural var-
iability in the background from true axons. To provide robustness to signal
intensity variation during training, chunks were augmented in real time
through random scaling and summating random constants. We used a
3D-U-Net architecture (30) with input size 643 and output of a 363 seg-
mentation. The output dimensions are smaller, accounting for the lack of
adequate information at the perimeter of the input cube to make an ac-
curate prediction. To segment large volumes of intact brains, the network
was applied in a sliding window fashion.

We used a binary cross-entropy pixel-wise loss function, where axons,
background, edges, and artifacts were given static weights to compensate
for class imbalances and the structural nature of the axon. The binary loss
function is calculated as (−[?log(?)+(1−?)log(1−?)])*w for every voxel, with
the predicted value (p), the true label (y), and a weight (w) determined from
the true label’s associated weight. The network was trained on Amazon
Web Services using p3.xlarge instances for ∼16 h. Training is ∼2× slower,
using 6 volumes per batch (as compared to 8 volumes per batch on AWS)
with an NVIDIA GeForce 11GB 1080 Ti GPU. We trained many models with
varying weights for the loss function and data scaling factor and picked the
model that resulted in the lowest validation loss.

Model Evaluation. To evaluate the network, we compared the validation set
output by the model to ground truth human annotations. Each pixel was
classified to be TP (true positive), TN (true negative), FP (false positive), or FN
(false negative). It is important to note that we did not include pixels which
were labeled as edges because these were predetermined to be ambiguous
cases and would not be an accurate representation of the network’s per-
formance. Using these four classes, we used the following formulas for
metrics: precision = TP/(TP + FP); recall = TP/(TP + FN); F1 value = 2*TP/(2*TP +
FP + FN); and Jaccard index = TP/(FP + TP + FN). Human–human comparison
was done by having 2 separate experts annotate the same 41 slices from
each of 8 separate substacks before proceeding with the same set of
evaluations.

Skeletonization and 3D Alignment to CCF. Probabilistic volumes from the
output of TrailMap were binarized at eight separate thresholds, from 0.2 to
0.9. Each of these eight volumes was skeletonized in three dimensions
(skimage-morphology-skeletonize_3d). The logical binary skeleton outputs
were each weighted by the initial probability threshold used to generate
them and subsequently were summed together. The resulting armature thus
retains information about TrailMap’s prediction confidence without break-
ing connected structures by threshold segmentation. Small, truncated, and
disconnected objects were removed as previously described (40). We
downsampled this armature from 4.0625 μm per pixel (XY) and 3 μm per
pixel (Z) into a 5 × 5 × 5-μm space and also downsampled the auto-
fluorescence image into a 25 × 25 × 25-μm space. The autofluorescence
channel was aligned to the Allen Institute’s 25-μm reference brain acquired
by serial two-photon tomography. These affine and bspline transformation
parameters (modified from ref. 8) were used to warp the axons into the CCF
at 5-μm scaling. Once in the CCF, ABA region masks can be implemented for
pseudocoloring, cropping, and quantifying axon content on a region-by-region
basis. Rolling sphere voxelization with a radius of 45 voxels (225 μm) operates
by summing total axon content after binarization.

Data Availability. Example image files, tutorials, and associated code for data
handling, model training, and inference, as well as the weights from our best
model are all available at https://github.com/AlbertPun/TRAILMAP.
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